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The relation between thermodynamic phase transitions in classical systems and
topological changes in their configuration space is discussed for two physical
models and contains the first exact analytic computation of a topologic
invariant (the Euler characteristic) of certain submanifolds in the configuration
space of two physical models. The models are the mean-field XY model and the
one-dimensional XY model with nearest-neighbor interactions. The former
model undergoes a second-order phase transition at a finite critical temperature
while the latter has no phase transitions. The computation of this topologic
invariant is performed within the framework of Morse theory. In both models
topology changes in configuration space are present as the potential energy is
varied; however, in the mean-field model there is a particularly ‘‘strong’’ topol-
ogy change, corresponding to a big jump in the Euler characteristic, connected
with the phase transition, which is absent in the one-dimensional model with no
phase transition. The comparison between the two models has two major con-
sequences: (i) it lends new and strong support to a recently proposed topological
approach to the study of phase transitions; (ii) it allows us to conjecture which
particular topology changes could entail a phase transition in general. We also
discuss a simplified illustrative model of the topology changes connected to
phase transitions using of two-dimensional surfaces, and a possible direct con-
nection between topological invariants and thermodynamic quantities.

KEY WORDS: Phase transitions; topology; configuration space; mean-field
models.



1. INTRODUCTION

One can wonder whether the current mathematical description of thermo-
dynamic phase transitions (based on the loss of analyticity of thermody-
namic observables (1–3)) is the ultimate possible one, or whether a reduction
to a deeper mathematical level is possible.

Besides a purely theoretical motivation, there are other reasons for
thinking of such a possibility. Among the others, we mention the growing
experimental evidence that phase transitions occur in very small N systems,
like nuclear clusters as well as atomic and molecular clusters, in nano and
mesoscopic systems, in polymers and proteins, in very small drops of
quantum fluids (BEC, superfluids and superconductors).

Moreover, new mathematical characterizations of thermodynamic
phase transitions could well be of interest for the treatment of other
important topics in statistical physics, as is the case of amorphous and
disordered systems (like glasses and spin-glasses), or to incorporate also
first-order phase transitions. A different attempt than is discussed here has
been made in macroscopic parameter space instead of in microscopic phase
space in ref. 4.

In a number of recent papers (5–10) a proposal has been put forward for
a new mathematical approach to the study of phase transitions. This
applies to physical systems described by continuous variables—qi and pi,
i=1,..., N—entering a standard Hamiltonian

H=1
2 C

N

i=1
p2

i +V(q1,..., qN), (1)

where V(q1,..., qN) is the potential energy. The main issue of this new
approach is a Topological Hypothesis (TH). The content of the TH is that
at their deepest level phase transitions of a system are due to a change of
the topology of suitable submanifolds in its configuration space. More
precisely, once the microscopic interaction potential V(q1,..., qN) is given,
the configuration space of the system is automatically foliated into the
family {Sv}v ¥ R of equipotential hypersurfaces independently of any statis-
tical measure we may wish to use. Now, from standard statistical mechan-
ical arguments we know that the larger the number N of particles, the
closer to some Sv are the microstates which significantly contribute to the
statistical averages of thermodynamic observables. At large N, and at any
given value of the inverse temperature b, the effective support of the
canonical measure is narrowed very closely to a single hypersurface
Sv — {q ¥ RN | V(q)=v} … RN, with v a suitable function of b.

Now, the TH consists in assuming that some suitable change of the
topology of the {Sv}, or equivalently, at large N, of the submanifolds
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Mv={q ¥ RN | V(q) [ v} (the manifolds Sv are the boundaries of the Mv,
i.e., Sv=“Mv), occurring at some vc=vc(bc) (or vc=vc(Ec)), is the deep
origin of the singular behavior of thermodynamic observables at a phase
transition; (by change of topology we mean that {Sv}v < vc

are not diffeo-
morphic4 to the {Sv}v > vc

, or equivalently that {Mv}v < vc
are not diffeo-

4 A diffeomorphism is a smooth map between two differentiable manifolds which is invertible
together with its derivatives.

morphic to the {Mv}v > vc
). In the following of the paper we shall consider

the topology changes of the Mv, because these are naturally investigated
using Morse theory.

The present paper contributes to this new approach to phase transi-
tions with a crucial step forward. This consists of an exact analytic treat-
ment of the topology changes in the configuration space of the mean-field
XY model and of their relation to the thermodynamic phase transition,
reported in Section 2. In Section 3 we present an analogous treatment of a
closely related model, the one-dimensional XY model with nearest-neigh-
bors interactions, which does not have any thermodynamic phase transi-
tion, and we compare the results with those obtained for the mean-field
case. In Section 4 we present and discuss a geometric model built in terms
of two-dimensional surfaces which should help the intuition in understand-
ing some of the aspects of the much more complex topology changes in
N-dimensional configuration spaces. Section 5 is devoted to some final
remarks and to the discussion of possible future developments. The paper
is completed by Appendix A which is devoted to the proof of some crucial
estimates used in the main text.

2. THE MEAN-FIELD XY MODEL

In this section we give a complete analytical characterization of the
topological changes in the configuration space of a model with long-range
interactions, the mean-field XY model, including the one related to the
phase transition. This is, to our knowledge, the first complete analytical
characterization of a topological change in configuration space related to a
thermodynamic phase transition: a short account of this result has already
been given in ref. 15. For a family of submanifolds of the configuration
space defined by the potential energy, we are able—for the first time for a
model of physical relevance—to determine completely, in a constructive
way, the topology and to give analytical estimates of the Betti numbers,
i.e., of fundamental topological invariants.5 This allows us to compute

5 The Betti numbers bk of a differentiable manifold M are the dimensions of the de Rham’s
cohomology vector spaces Hk(M; R), that is the vector spaces of closed differential k-forms
modulo the exact forms of the same order. These are diffeomorphism invariants.
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exactly a topological invariant: the Euler characteristic, which can be
defined as a combination of the Betti numbers. (11)

The mean-field XY model (16) is defined by a Hamiltonian of the class
(1) where the potential energy function is

V(j)=
J

2N
C
N

i, j=1
[1 − cos(ji − jj)] − h C

N

i=1
cos ji. (2)

Here ji ¥ [0, 2p] is the rotation angle of the i-th rotator and h is an exter-
nal field. Defining at each site i a classical spin vector si=(cos ji, sin ji)
the model describes a planar (XY) Heisenberg system with interactions of
equal strength among all the spins. We consider only the ferromagnetic
case J > 0; for the sake of simplicity, we set J=1. The equilibrium statis-
tical mechanics of this system is exactly described, in the thermodynamic
limit, by mean-field theory. In the limit h Q 0, the system has a continuous
phase transition, with classical critical exponents, at Tc=1/2, or ec=3/4,
where e=E/N is the energy per particle. (16)

Defining the magnetization vector m as m=(mx, my), where

mx=
1
N

C
N

i=1
cos ji, (3)

my=
1
N

C
N

i=1
sin ji, (4)

the potential energy V can be written as a function of m as follows:

V(j)=V(mx, my)=
N
2

(1 − m2
x − m2

y) − hN mx. (5)

The range of values of the potential energy per particle, V=V/N, is then

− h [ V [
1
2
+

h2

2
. (6)

The configuration space M of the model is an N-dimensional torus,
being parametrized by N angles. We want to investigate the topology of the
following family of submanifolds of M,

Mv=V−1(−., v]={j ¥ M : V(j) [ v}, (7)

i.e., each Mv is the set {ji}
N
i=1 such that the potential energy per particle

does not exceed a given value v: this is the same as the Mv=ME − K defined
above (v has been rescaled by 1

N because we choose V=V/N as a Morse
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function in order to make the comparison of systems with different N
easier). As v is increased from − . to +., this family covers successively
the whole manifold M (Mv — ” when v < − h) .

According to Morse theory, (12) topology changes of Mv can occur only
in correspondence with critical points of V, i.e., those points where the
differential of V vanishes. This immediately implies that no topology
changes can occur when v > 1/2+h2/2, i.e., all the Mv’s with v >
1/2+h2/2 must be diffeomorphic to the whole M, that is, they must be
N-tori. Moreover, if V is a Morse function (i.e., it has only non-degenerate
critical points) then topology changes of Mv are actually in one-to-one
correspondence with critical points of V, and they can be characterized
completely. At any critical level of V the topology of Mv changes in a way
completely determined by the local properties of the Morse function: a
k-handle H (k) is attached,6 (12) where k is the index of the critical point, i.e.,

6 A k-handle H (k) in n dimensions (0 [ k [ n) is the product of two disks, one k-dimensional,
Dk, and one (n − k)-dimensional, D (n − k): H (k)=Dk × D (n − k).

the number of negative eigenvalues of the Hessian matrix of V at this
point. Notice that if there are m > 1 critical points on the same critical
level, with indices k1,..., km, then the topology change is made by attaching
m disjoint handles H (k1),..., H (km). This way, by increasing v, the topology
of the full configuration space M can be constructed sequentially from the
Mv. Knowing the index of all the critical points below a given level v, we
can obtain exactly the Euler characteristic of the manifolds Mv, defined by

q(Mv)= C
N

k=0
(−1)k mk(Mv), (8)

where the Morse number mk is the number of critical points of V which
have index k. (12) The Euler characteristic q is a topological invariant (i.e., it
is not affected by a diffeomorphic deformation of Mv): any change in
q(Mv) implies a topology change in the Mv. It will turn out that as long as
h > 0, V is indeed a Morse function at least in the interval
− h [ v < 1/2+h2/2, while the maximum value v=1/2+h2/2 may be
pathological in that it may correspond to a critical level with degenerate
critical points. However, as we shall show in the following, we shall be able
to extend our analysis also to this last critical level.

Thus, in order to detect and characterize topological changes in Mv we
have to find the critical points and the critical values of V, which means
solving the equations

“V(j)
“ji

=0 , i=1,..., N, (9)
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and to compute the indices of all the critical points of V, i.e., the number
of negative eigenvalues of its Hessian

Hij=
“

2V

“ji“jj
i, j=1,..., N. (10)

Taking advantage of Eq. (5), we can rewrite the Eq. (9) as

(mx+h) sin ji − my cos ji=0, i=1,..., N. (11)

As long as (mx+h) and my are not simultaneously zero (the violation of
this condition is possible only on the level v=1/2+h2/2), the solutions of
Eq. (11) are all configurations in which the angles are either 0 or p. In par-
ticular, the configuration

ji=0 - i (12)

is the absolute minimum of V, while all the other configurations corre-
spond to a value of v which depends only on the number of angles which
are equal to p. If we denote with np this number, we have that the N critical
values are:

v(np)=
1
2
51 −

1
N2 (N − 2np)26−

h
N

(N − 2np). (13)

Inverting this relation yields np as a function of the level value v:

np(v)=int 51+h
2

N ±
N
2
=h2 − 2 1v −

1
2
26 , (14)

where int[a] stands for the integer part of a. We can also compute the
number C(np) of critical points having a given np, which is the number of
distinct binary strings of length N having np occurrences of one of the
symbols, which is given by the binomial coefficient

C(np)=1N
np

2=
N!

np! (N − np)!
. (15)

We have thus shown that as v changes from its minimum − h (corres-
ponding to np=0) to 1

2 (corresponding to np=N
2 ) the manifolds Mv undergo

a sequence of topology changes at the N critical values v(np) given by
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Eq. (13). We expect that there is another topology change located at the
last (maximum) critical value,

vc=
1
2
+

h2

2
. (16)

However, the above argument does not prove this, since the critical points
of V corresponding to this critical level may be degenerate. This, because
the solutions of the two equations in N variables mx=my=0 need not to
be isolated, so that then on this level, V would not be a proper Morse
function. Then a critical value vc is still a necessary condition for the exis-
tence of a topology change, but it is no longer sufficient. (13) However, as
already argued in refs. 7 and 9, it is just this topology change occurring at
vc given in Eq. (16), which is related to the thermodynamic phase transition
of the mean-field XY model. For, the temperature T, the energy per par-
ticle e and the average potential energy per particle u=OVP obey, in the
thermodynamic limit, the equation

2e=T+2u(T); (17)

substituting in this equation the values of the critical energy per particle
and of the critical temperature we get

uc=u(Tc)=1/2. (18)

as h Q 0, vc Q
1
2 , so that vc=uc. Thus a topology change in the family of

manifolds Mv occurring at this vc, where vc is independent of N, is con-
nected with the phase transition in the limit N Q ., and h Q 0, when
indeed thermodynamic phase transitions are usually defined, at least in the
canonical ensemble.

We still have to prove that a topology change at vc actually exists. To
carry out this proof, we will use Morse theory to characterize completely
all the other topology changes, occurring at v < vc: this, together with the
knowledge that at v > vc the manifold Mv must be an N-torus, will allow us
not only to prove that a topology change at vc must actually occur, but
also to understand in which way it is different from the other topology
changes, i.e., those occurring at 0 [ v < vc. Morse theory allows a complete
characterization of the topology changes occurring in the Mv’s if the indices
of the critical points of V are known. In order to determine the indices of
the critical points (that is the number of negative eigenvalues of the Hessian

Phase Transitions and Topology Changes in Configuration Space 1097



of V at the critical point) we proceed as follows. Since the diagonal ele-
ments of the Hessian are

Hii=di=
1
N

[(mx+h) cos ji+my sin ji] −
1

N2 , (19)

and the off-diagonal elements are

Hij=−
1

N2 (sin ji sin jj+cos ji cos jj), (20)

one can write the Hessian as the sum of a diagonal matrix D whose
nonzero elements are

di=
1
N

[(mx+h) cos ji+my sin ji], i=1,..., N, (21)

and of a matrix B whose elements are just the Hij given in Eq. (20), also for
i=j (the diagonal elements being − 1/N2). Since the ratio between the
elements of B and those of D is O(1/N), one would expect at first sight
that only the diagonal elements survive when N ± 1, so that the Hessian
approaches a diagonal matrix equal to D. However, this is not, in principle,
necessarily true: one cannot immediately say that at large N the eigenvalues
of the Hessian are the d’s given in Eq. (21) plus a correction vanishing as
N Q ., because the number of elements of B is N2, so that the contribu-
tion of the matrix B to the eigenvalues of the Hessian does not, in general,
vanish at large N. That nevertheless the argument for this crucial point is
correct in this special case is shown in Appendix A, and is due to the par-
ticular structure of the matrix B. The latter is of rank one, and one can
prove then that at the critical points of V the number of negative eigen-
values of H equals the number of negative diagonal elements d ± 1, so that
as N ± 1 we can conveniently approximate the index of the critical points
with the number of negative d’s at x,

index(x) 4 #(di < 0). (22)

At a given critical point, with given np, where the x-component of the
magnetization vector is

mx=1 −
2np

N
, (23)
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so that mx > 0 (resp. < 0) if np [ N
2 (resp. > N

2 ), the eigenvalues of D are

di=mx+h i=1,..., N − np; (24a)

di= − (mx+h) i=N − np+1,..., N. (24b)

Then, if the external field h is sufficiently small,

(mx+h) > 0 if np [
N
2

,

(mx+h) < 0 if np >
N
2

, (25)

so that, denoting with index(np) the index of a critical point with np angles
equal to p, we can write

index(np)=np if np [
N
2

, (26a)

index(np)=N − np if np >
N
2

. (26b)

From these equations combined with Eq. (15) one can obtain for the
Morse numbers mk, i.e., for the number of critical points of index k, as a
function of the level v, as long as − h [ v < 1/2+h2/2 (i.e., excluding the
limiting value v=1/2+h2/2) the following expression:

mk(v)=1N
k
2 [1 − G(k − n (−)(v))+G(N − k − n (+)(v))], (27)

where G(x) is the Heaviside theta function and n ( ± )(v) are the limits of the
allowed np’s for a given value of v, i.e., from Eq. (14),

n ( ± )(v)=
N
2
51+h ±=h2 − 2 1v −

1
2
26 . (28)

We note that 0 [ n (−)
p [ N

2 and N
2 +1 [ n (+)

p [ N, so that Eq. (27) implies

mk(v)=0 - k >
N
2

, (29)

i.e., no critical points with index larger than N/2 exist as long as
v < vc=1/2+h2/2. This is the crucial observation to prove that a topology
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change must occur at vc. For, as the Betti numbers of a manifold are posi-
tive (or zero) numbers, using the Morse inequalities, which state that the
Morse numbers are upper bounds of the Betti numbers, (13) i.e.

bk [ mk for k=0,..., N, (30)

we can immediately conclude that as long as v < vc=1/2+h2/2

bk(Mv)=0 - k >
N
2

. (31)

Thus, as 1
2 [ v < 1

2+
h2

2 the manifold is only ‘‘half ’’ an N-torus, and since we
know that for v > 1

2+
h2

2 , Mv is a (full) N-torus, whose Betti numbers are

bk(TN)=1N
k
2 k=0, 1,..., N, (32)

we conclude that at v=vc=
1
2+

h2

2 a topology change must occur, which
involves the attaching of (N

k) different k-handles for each k ranging from
N
2 +1 to N, i.e., a change of O(N) of the number of Betti numbers.

Let us remark that such a topology change not only exists: it is surely
a ‘‘big’’ topology change, for all of a sudden, ‘‘half ’’ an N-torus becomes a
full N-torus, via the attaching for each different k (ranging from N/2+1 to
N) of (N

k) k-handles. More precisely, a number of Betti numbers which is
O(N) changes, and changes by amounts which are of the same order as
their maximum possible values. On the other hand, all the other topology
changes correspond to the attaching of handles of the same type (index), in
fact, as long as v < vc, each critical level contains only critical points of the
same index, and the index grows with v, i.e., if xc and x −

c are critical points
and V(x −

c) > V(xc), then index(x −

c) > index(xc). The potential energy per
degree of freedom V is a regular Morse function (or a Morse–Smale func-
tion (13)) as long as v < vc, but this is no longer true as v \ vc; actually, as we
have already observed, V could even be no longer a Morse function at all,
because the level vc might contain degenerate critical points. Nevertheless,
as we have shown, this does not prevent us from giving a complete analysis
of the topology of the Mv’s for all the values of v, since we can exploit our
explicit knowledge of the topology of the Mv’s for any v > vc.

To illustrate what we have described so far, the Morse numbers mk are
shown in Fig. 1 as a function of k for two values of v, v=1

4 , i.e., an inter-
mediate value between the minimum and the maximum of V—shown in
Fig. 1(a)—and v=1

2—shown in Fig. 1(b). We see that the mk with 0 [ k [ N
2

grow regularly as v grows until vc=
1+h2

2 , while all the mk with k > N
2 remain
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Fig. 1. Mean-field XY model. (a) Histogram of log(mk(Mv))/N as a function of k for
v=1/4; (b) Histogram of log(mk(Mv))/N as a function of k for v=1/2. In both cases N=
50 and h=0.01. (c) For comparison, histogram of log(bk(TN))/N as a function of k for an
N-torus TN, with N=50, which is the lower bound of log(mk(Mv))/N for any v \ vc.

zero, so that also the corresponding Betti numbers must vanish. But at vc a
dramatic event occurs, because for all the values of v > vc the Betti numbers
bk must be those of an N-torus, which are reported for comparison in
Fig. 1(c). A sudden transition from the situation depicted in Fig. 1(b) to
that of Fig. 1(c) occurs at vc, i.e., N

2 Betti numbers simultaneoulsy become
nonzero.

Now we are in a position to explain how these topological transitions
can be described by topological invariants. The optimal situation would be
the possibility of computing all the N+1 Betti numbers of the manifolds
Mv as a function of v: unfortunately, we are only able to set an upper limit
to them, using the Morse inequalities (30). Nevertheless, we can use
Eqs. (8), (14), and (27) to compute the Euler characteristic of the manifolds
Mv, since we only need the mk for that. It turns out then that q jumps from
positive to negative values, so that it is easier to look at |q|. In Fig. 2,
log(|q|(Mv))/N is plotted as a function of v for various values of N
ranging from 50 to 800. The ‘‘big’’ topology change occurring at the
maximum value of V, which corresponds in the thermodynamic limit to
the phase transition, implies a discontinuous jump of |q| from a big value
to zero.
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Fig. 2. Mean-field XY model. Plot of log(|q|(Mv))/N as a function of v. N=50, 200, 800
(from bottom to top) and h=0.01; vc=0.5+O(h2).

3. THE ONE-DIMENSIONAL XY MODEL

We consider now one example where there are topological changes
very similar to the ones of the mean-field XY model but no phase transi-
tion occurs, i.e., the one-dimensional XY model with nearest-neighbor
interactions, whose Hamiltonian is of the class (1) with interaction poten-
tial

V(j)=1
4 C

N

i=1
[1 − cos(ji+1 − ji)] − h C

N

i=1
cos ji. (33)

In this case the configuration space M is still an N-torus, and using again
the interaction energy per degree of freedom V=V/N as a Morse func-
tion, we can prove that also here there are many topological changes in the
submanifolds Mv as v is varied from its minimum to its maximum value.

The critical points are again those where the ji’ s are equal either to 0
or to p. However, at variance with the mean-field XY model, the critical
values are now determined by the number of domain walls, nd, i.e., the
number of boundaries between connected regions on the chain where the
angles are all equal (‘‘islands’’ of p’s and ‘‘islands’’ of 0’s). The number of
p’s leads only to a correction O(h) to the critical value of v, which is given
by

v(nd; np)=
nd

2N
+h np. (34)

Since nd ¥ [0, N − 1] (with free boundary conditions, nd=0, 1,..., N − 1,
while with periodic boundary conditions nd is still bounded by 0 and N − 1,
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but can only be even), the critical values lie in the same interval as in the
case of the mean-field XY model. But now the maximum critical value,
instead of corresponding to a huge number of critical points, which rapidly
grows with N, corresponds to only two configurations with N − 1 domain
walls, which are j2k=0, j2k+1=p, with k=1,..., N/2, and the reversed
one.

The number of critical points with nd domain walls is therefore
(assuming free boundary conditions)

N(nd)=2 1N − 1
nd

2 . (35)

We can compute the index of the critical points also in this case (see
Appendix A.2 for details). It turns out that

index(nd)=nd, (36)

so that

mk(nd)=2 1N − 1
k

2 G(nd − k). (37)

It is evident then that any topology change here corresponds to the attach-
ing of handles of the same type. However, no ‘‘big’’ change like the one at
vc in the case of the mean-field model exists, although V is a Morse–Smale
function on the whole manifold M. To illustrate this, we plot in Fig. 3 the
values of the Morse indices mk as a function of k, as we have already done
for the mean-field XY model in Fig. 1. Comparing Fig. 3 with Fig. 1, we
see that while in the mean-field model there is a critical value where N

2 Betti
numbers become simultaneously nonzero, i.e., there exists a topology
change which corresponds to the simultaneous attaching of handles of N

2

different types, while here in the one-dimensional nearest-neighbor model
nothing like that happens.

Also in this case, using Eqs. (35) and (36), we can compute the Euler
characteristic of the submanifolds Mv:

q(Mv)=2 C
nd(v)

k=0
(−1)k 1N − 1

k
2=2 (−1)nd(v) 1N − 2

nd(v)
2 , (38)

where, due to Eq. (34),

nd(v)=2Nv+O(h). (39)
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Fig. 3. The same as Fig. 1 for the one-dimensional XY model with nearest-neighbor
interactions. (a) Histogram of log(mk(Mv))/N as a function of k for v=1/4; (b) Histogram of
log(mk(Mv))/N as a function of k for v=1/2. In both cases N= 50 and h=0.01. (c) For
comparison, histogram of log(bk(TN))/N as a function of k for an N-torus TN, with N=50.

The Euler characteristic for the one-dimensional nearest-neighbor case is
shown in Fig. 4. Comparing this figure with Fig. 2, we see that there is here
no jump in the Euler characteristic.

Before discussing the relevance that these results may have for the
general problem of the relation between topology and phase transitions, it

Fig. 4. Plot of log(|q|(Mv))/N for the one-dimensional XY model with nearest-neighbor
interactions as a function of v. N=50, 200, 800 (from bottom to top).
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is illustrative to consider two abstract simplified models of topological
transitions that occurred in the two models we have considered so far.

4. TWO-DIMENSIONAL MODEL OF TOPOLOGY CHANGES

A two-dimensional model of the topological transition occurring in the
configuration space of the physical models we have discussed, which could
perhaps help the intuition, can be built as follows. Let us consider a two-
dimensional torus T, and place it on a plane: let hmax be the maximum
height of the surface above the plane (see Fig. 5(a)). Then deform the torus
(by means of a diffeomorphism) until the upper end of the hole is at height
hmax − e, obtaining the surface M shown in Fig. 5(b). It is apparent that e

can be made as small as we want.
Let us now consider the height function H above the plane as a Morse

function, so that the manifolds

Th=H−1(−., h]={x ¥ T : H(x) [ h} (40)

Mh=H−1(−., h]={x ¥ M : H(x) [ h} (41)

are defined. As h varies from its minimum to its maximum values (h=0
and h=3, respectively, in Fig. 5), the manifolds Th and Mh cover the whole
torus; as long as h is lower than the top of the hole (h=2 in Fig. 5), both
Th and Mh are ‘‘half-tori,’’ but then the Th become gradually a full torus,
while the Mh jump abruptly from a half-torus to a full torus as h is
changed by e. Identifying the height function with the potential energy, the
case of the Th clearly reminds of the behavior of the one-dimensional XY
model with no phase transition, while the case of the Mh seems close to

2

0

h

1

3

0

h

1

3

(b)(a)

Fig. 5. (a) A torus T and its height function. Here hmax=3. (b) A deformation M of such a
torus as explained in the text.
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(a) (b)

Fig. 6. (a) A surface of high genus (here g=9). (b) A deformation M (g) of such a surface as
explained in the text.

what happens in the mean-field XY model, and the ‘‘jump’’ from the half-
torus to the full torus is similar to the topology change which is connected
to the phase transition.

The analogy with the mean-field models becomes even clearer if,
instead of a torus, we consider a compact surface of genus7 g ± 1, i.e., with

7 The genus g is the number of handles of a two-dimensional surface.

many holes, and deform the surface with a diffeomorphism until the upper
end of all the holes is at height hmax − e, as shown in Fig. 6. Again, e can be
made as small as we want. Let us denote by M (g) the deformed surface.

The Betti numbers of the surface M (g) are (22)

b0=b2=1 , b1=2g, (42)

and the Euler characteristic is

q(M (g))=q(M(g))=2 − 2g, (43)

i.e., a big negative number. Let us now consider, as in the previous case of
the torus, the height function H above the plane as a Morse function. The
manifolds

M (g)
h =H−1(−., h]={x ¥ M (g) : H(x) [ h} (44)

will be topologically very different from the whole M(g) as long as
h < hmax − e but sufficiently large that all the critical levels corresponding to
the bottoms of all the holes have already been crossed: in fact, their Betti
numbers will be

b0(M(g)
h )=1, b1(M (g)

h )=g, b2(M(g)
h )=0, (45)
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Fig. 7. Plot of the logarithm of the absolute value of the Euler characteristic of the subma-
nifolds of given height of a surface M (g) like the one depicted in Fig. 6(b), with g=50 and
hmax=3, as a function of the height h. The small jumps are the topology transitions corre-
sponding to the crossing of the bottoms of the holes: the last big jump is the one occurring at
hmax, when e Q 0.

and the Euler characteristic will be

q(M (g)
h )=1 − g. (46)

Then, by changing the value of the height by an amount e as small as one
wants, one changes the Betti number b1 from g to 2g, the b2 from 0 to 1
and q from 1 − g to 2 − 2g. This is a topological change which involves a
change of O(d) Betti numbers (d is the dimension of the manifold); more-
over, the size of the change is of the order of the value of the Betti
numbers. This topology change involves also a change of the Euler charac-
teristic q which is again of the same order as its value. Identifying again the
height function with the potential energy, we see that this is just what
happens in the case of the Mv of the mean-field XY model, although there
the dimension of the manifolds is N and very large, while in this low-
dimensional analogy it is only d=2. The behavior of |q(M (g)

h )| as a func-
tion of h is plotted in Fig. 7. We see that the behavior of |q| is indeed very
similar to the case of the mean-field XY model, the only big difference
being that in the latter |q| jumps to zero while here it jumps to a nonzero
value. However this difference is due to the fact that the Euler characteris-
tic of a torus is zero while that of a surface of genus g is 2 − 2g.

5. CONCLUDING REMARKS AND OPEN QUESTIONS

We conclude with some comments and remarks, and with a discussion
of the open problems and of the future perspectives opened by the results
we have presented.
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5.1. Topology and Thermodynamic Functions

The results we have reported in the present paper concerning the mean-
field and the one-dimensional XY models, together with a theorem (14)

which states the necessity of topology changes in the Mv’s for the existence
of phase transitions (at least for a certain class of short-range interactions),
lend strong support to the TH. However, one could wonder whether a
direct relation between topology and thermodynamic quantities, like
entropy or temperature, exists.

A result—although approximate—which shows that there could be an
explicit contribution of topological quantities to the temperature was
indeed found in a previous paper: (10) it relates the inverse temperature b=1

T

to the Betti numbers bi of the constant-energy hypersurface in phase space,
SE. We stress the fact that such a relation—Eq. (43) in ref. 10—does not
allow to express b in terms of topological invariants alone, because also
other contributions, of a non-topological nature, exist: nonetheless a topo-
logical contribution expressed as a function of the Betti numbers of SE is
explicitly present. A similar relation can be obtained also for the entropy:
the derivation only involves a slight modification of the reasoning of Sec. V
of ref. 10. Without entering into technical details, we simply observe that,
under the same approximations as made in ref. 10, the ‘‘topological con-
tribution’’ y(E) to the entropy per degree of freedom s=S

N can be written,
up to constant terms, as

y(E) 4
1

2N − 1
log C

2N − 1

i=0
bi(SE), (47)

an expression identical to the corresponding expression for b in ref. 10,
apart from the presence of a logarithm here. We remark that, as in the case
of b, there are also other contributions, of a non-topological nature, to the
entropy. However, it is interesting to look at this topological y-contribution
alone to see whether it carries the relevant information about the way the
topological transition of the energy hypersurface in phase space triggers the
phase transition, i.e., the nonanalyticity of the thermodynamic quantities.
Therefore we can try to compute y for the models studied in the present
paper.

First of all, we have to express y(E) in terms of the topological
invariants of the manifolds Mv instead of in terms of the Betti numbers of
the energy hypersurfaces SE [Eq. (47)]. To do that, we resort to the fact
that—at large N and for systems with standard kinetic energy K—the
volume measure of SE concentrates on8 SN − 1

O2KP1/2 × MOVP, so that SE can be

8 SN − 1
O2KP1/2 is an N − 1-dimensional hypersphere defined by the kinetic energy term ; p2

i =2OKP.
We have E=OKP+dK+OVP+dV, and dK/OKP, dV/OVP=O(1/`N).
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approximated by this product manifold. Using then the Kunneth for-
mula (11) for the Betti numbers of a product manifold A × B, i.e.,

bi(A × B)= C
j+k=i

bj(A) bk(B) (48)

which, when applied to SN − 1
O2KP1/2 × MOVP, gives bi(SE)=2bi(Mv) for i=

1,..., N − 1, and bj(SE)=bj(Mv) for j=0, N, since all the Betti numbers of
a hypersphere vanish except b0 and bN which are equal to 1. This allows us
to write

y(v) 4
1

2N
log 5b0(Mv)+2 C

N − 1

i=1
bi(Mv)+bN(Mv)6 , (49)

where we have also replaced 2N − 1 with 2N because we assume that N is
large. Since we cannot compute the Betti numbers exactly, we cannot
evaluate this expression; nonetheless, we can estimate it by using the Morse
numbers as approximations of the Betti numbers, i.e., by putting

bi(Mv) 4 mi(Mv), i=0,..., N. (50)

In general, with the exception of perfect Morse functions (i.e., those for
which bi=mi), the Morse numbers are only upper bounds of the Betti
numbers. However, looking at Figs. 1(b)–(c) (for the mean-field XY model)
and 3(b)–(c) (for the one-dimensional XY model), we can observe that the
nonvanishing Morse numbers of the manifolds Mv for values of v very
close to vmax are very close to the Betti numbers of the Mv’s for v=vmax

(which are N-tori), and this suggests that for the models studied in the
present paper the Morse numbers mi could well be good approximations to
the Betti numbers bi.

We can then compute the quantity

ỹ(v)=
1

2N
log 5m0(Mv)+2 C

N − 1

i=1
mi(Mv)+mN(Mv)6 , (51)

for the two models studied in the paper. We note that

C
N

i=0
mi(Mv)=Nc(Mv), (52)

where Nc(Mv) is the total number of critical points of the function V in the
manifold Mv. Therefore, when N gets large, and if m0 and mN are not much
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Fig. 8. Mean-field XY model. Plot of log(Nc)/N as a function of v. N=50, 200, 800 (from
top to bottom) and h=0.01; vc=0.5+O(h2).

larger than the other Betti numbers (which is true in our case, see Fig. 1),
we can write approximately

ỹ(v) 4
1
N

log Nc(v), (53)

apart from an additive constant. The behavior of this quantity is plotted as
a function of v in Fig. 8 for the mean-field XY model and in Fig. 9 for the
one-dimensional XY model. First, we note that in both cases the ‘‘to-
pological contribution’’ ỹ to the entropy behaves qualitatively as expected
for the configurational entropy, i.e., it grows monotonically up to the
maximum value of v, after which it remains constant. Moreover, we see
that, in the case of the mean-field model (Fig. 8), the topology change at vc

related to the phase transition corresponds to a discontinuity in the slope of
ỹ(v), which thus seems to be both the precursor and the source of the

Fig. 9. One-dimensional XY model with nearest-neighbor interactions. Plot of log(Nc)/N as
a function of v. N=50, 200, 800 (from top to bottom) and h=0.01.
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nonanalyticity of the entropy at the phase transition point as N Q .. In
the case of the one-dimensional XY model, where no phase transition is
present, unlike the mean-field case, the curve is smooth for any v, consis-
tent with the fact that also the entropy of the system is smooth.

Therefore the contribution of the Betti numbers alone to the thermo-
dynamic quantity s appears to yield the phase transition point correctly; an
indication again of the topological mechanism of the phase transition.

We emphasize that the discontinuity in Fig. 2 at v=vc corresponds to
that of Fig. 8 at the same value of v. Even more, the many small jumps in
the Euler characteristic occurring in Fig. 2, and corresponding to the topo-
logical changes which occur at v < vc, are smoothed out in Fig. 8 where the
topological contribution to the entropy, ỹ, is reported. This is due to the
fact that while the Euler characteristic is the alternating sum of the Morse
numbers mi, the y is the sum of them: this is a further indication that to
yield a phase transition, i.e., a discontinuity in a derivative of s, a ‘‘strong’’
topology change would be needed, such as to affect the variation of the
sum of all the Betti numbers as a function of v.

However, to what extent these results are of general validity remains
an interesting open question.

5.2. When Does a Topology Change Entail a Phase Transition?

Another fundamental point which still remains open in the topological
approach to phase transitions is the question of which are the sufficient
conditions for the topology changes of the manifolds Mv to entail a phase
transition. Topology changes appear to be rather common, and most of
them are not connected to phase transitions.

In our previous papers, clear evidence—albeit only numeric—was
found that phase transitions would correspond to very significant transi-
tions in the way the topology changes (8) as a function of v. Moreover, in
Section 5.1 we have discussed a possible mechanism through which a topo-
logical change could trigger a change in the properties of thermodynamic
functions, resulting in a phase transition.

On the basis of our results obtained before and here, we put forward
the conjecture that what we have observed in the case of XY models may
well have general validity: a topology change in the submanifolds Mv might
entail a phase transition if it involves the simultaneous attachment of
handles of O(N) different types on the same critical level. However, we
must be aware that this could well be specific to the class of models studied
here: to what extent this conjecture might have general validity remains an
open question.
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5.3. The Role of the External Field h

Studying the topology changes in the configuration space of XY
models, mean-field as well as one-dimensional, we have considered the
presence of an external field h ] 0 which explicitly breaks the O(2)-
invariance of the potential energy, and then, discussing the connection with
phase transitions, we have considered the case in which h tends to zero. We
did that for the sake of simplicity, for, if we set h=0 from the outset, the
potential energy per degree of freedom V is not, rigorously speaking, a
Morse function, because its O(2)-invariance entails the presence of a zero
eigenvalue in its Hessian. When h=0, the critical points of V are not
isolated, but form one-dimensional manifolds (topologically equivalent to
circles) which are left unchanged by the action of the O(2) continuous
symmetry group so that the critical points become in this case critical
manifolds. However, in the case of the mean-field XY model, as far as the
presence and the nature of topology changes are concerned, studying the
case with h=0 from the outset we find exactly the same behavior as in the
case we have discussed in this paper, i.e., as long as v < vc only handles of
the same type are attached, while at v=vc handles of N/2 different types
are attached, the only difference between the two cases being that when
h=0 the handles are not attached at isolated points, but rather to the
entire critical manifold. (12, 13) However, putting h=0 from the beginning
makes the computation of the Euler characteristic q(Mv) via the Morse
numbers much more difficult, because now one has to take into account
the contributions to q coming from the Betti numbers of the critical mani-
folds (see ref. 20 for the details).

In the case of the one-dimensional nearest-neighbor XY model, where
no phase transition is present, the use of h=0 from the outset implies a
further complication, i.e., that the critical points consist not only of the
configurations made of 0’s and p’s, but also of spin waves, that is configu-
rations

jj=j0 e ikj, (54)

with wavenumbers k depending on boundary conditions.
For all these reasons we preferred to force the potential energy to be a

Morse function via the explicit breaking of the O(2) symmetry using an
external field h ] 0. Incidentally, we notice that in the mean-field XY
model, as long as h ] 0, the topology changes which do not correspond to
any phase transition (i.e, those occurring at v < vc) occur at a number of
values of v which grows with N, and these values become closer and closer
as N grows, eventually filling the whole interval [0, 1

2] as N Q .. To the
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contrary, the value vc, which corresponds to the ‘‘big’’ topology change
connected to the phase transition, remains separated from the others by an
amount O(h2) also in the thermodynamic limit, and tends to 1

2 only when
h Q 0. This is reminiscent of a similar fact occurring in statistical mechan-
ics, where one observes a spontaneous symmetry breaking, signalled, e.g.,
by the onset of a finite magnetization even at zero external field, if one
assumes the presence of an external field and then lets it tend to zero only
after the thermodynamic limit is taken.

5.4. Transitional Phenomena in Finite Systems and Other Future

Developments

(a) If it would be possible to establish a one-to-one correspondence
between a particular class of topology changes in configuration space and
the usual thermodynamic phase transitions defined in the thermodynamic
limit, then, as a by-product, one would have available also a natural defi-
nition of phase transitions for finite systems. In fact, the topology changes
are defined at any N, so that one would call ‘‘phase transitions at finite N’’
those topology changes in configuration space which become phase transi-
tions in the usual, statistical-mechanical sense at infinite N. This would be
an interesting consequence of the present topological approach to phase
transitions, since it would circumvent the basic problem of any clear defi-
nition of phase transitions at finite N, by showing that all phase transitions
have their basic origin in a topological change which may occur also at
finite N, but entail true mathematical singularities in the thermodynamic
functions only at infinite N.

(b) Finite systems do not seem to be the only active field of statistical
physics where the topological approach might prove useful. Another pro-
mising field of application is that of glasses or, in general, of disordered
systems. It is now quite clear that many of the puzzling properties of
glasses are encoded in their ‘‘energy landscape’’, (18) i.e., in the structure of
valleys and saddles of the potential energy function: but this is directly
connected to the structure of the submanifolds Mv and Sv of configuration
space, and in fact topological concepts start to emerge in some recent
papers on glasses. (19)

(c) Finally, we notice that at present only systems undergoing second-
order phase transitions have been studied via the topological approach: a
natural question which arises is then if also first-order transitions can be
explained topologically. Work is in progress in this direction, and some
preliminary results indicate that also discontinuous phase transitions can be
connected to topology changes of the submanifolds Mv, and that a signa-
ture of them can be found in their Euler characteristic.
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APPENDIX A. ESTIMATE OF THE INDEX OF THE CRITICAL POINTS

In this Appendix we want to discuss some details related to the esti-
mates of the indices of the critical points we have used in Section 2 and
Section 3.

A.1. Mean-Field XY Model

Here we want to prove the crucial estimate (22), which we used in
Section 2 to compute the index of the critical points for the mean-field XY
model.

We recall that we want to compute the the number of negative eigen-
values of the Hessian matrix of the function V, i.e., of the matrix H whose
elements Hij are

Hij=
“

2V

“ji“jj
i, j=1,..., N, (A1)

where V=V/N and V is the potential energy of the mean-field XY model
defined in Eq. (2). The diagonal elements of this matrix are

Hii=di=
1
N

[(mx+h) cos ji+my sin ji] −
1

N2 , (A2)

and the off-diagonal ones are

Hij=−
1

N2 (sin ji sin jj+cos ji cos jj). (A3)

At the critical points of V, the angles are either 0 or p, so that the sines are
all zero and the cosines are ± 1. Moreover, since we are interested only in
the signs of the eigenvalues of H and not in their absolute values, we mul-
tiply H by N in order to get rid of the 1/N factor in front of it. We can
then write the matrix H (multiplied by N) as

H=D+B (A4)

where D is a diagonal matrix,

D=diag(di), (A5)

whose elements d are

di=(mx+h) cos ji, (A6)
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where the ji’s (i=1,..., N) are computed at the critical point, and the
elements of B can be written in terms of a vector s whose N elements are
either 1 or − 1:

bij=−
1
N

sisj, (A7)

where

si=+1(−1) if ji=0(p). (A8)

This, since when the angles are either 0 or p, the sines in Eq. (20) vanish, so
that then

NHij=−
1
N

cos ji cos jj, (A9)

and

cos ji=si. (A10)

Having fixed the notation, our goal is to show that, at least when N is
large, the number of negative eigenvalues of the full matrix H, i.e., the
index of the critical point, can be conveniently approximated by the
number of negative eigenvalues of D, that is, by the number of negative d’s.
To do that, we proceed in two steps: (i) we show that the matrix B is of
rank one (which implies that B has N − 1 zero eigenvalues and only one
nonzero eigenvalue), and (ii) we adapt a theorem due to Wilkinson (17) to
this case, thus proving our assertion.

As to step (i), let us consider for example a case with N=3, and the
critical point corresponding to, say, (j1, j2, j3)=(p, 0, 0). The vector s is
then

(s1, s2, s3)=(−1, 1, 1). (A11)

Using Eq. (A7), the matrix B is

−
1
3
R

1 −1 −1

−1 1 1

−1 1 1

S . (A12)

We see that the second row is equal to the first multiplied by −1, and the
same holds for the third row. This is true for any N, and is a consequence
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of Eq. (A7): any row of the matrix B is equal to another row multiplied by
either +1 or −1. This means that N − 1 rows are not linearly independent
and that the rank of the matrix is one.

We have then proved that our Hessian matrix H is the sum of a
diagonal matrix and of a matrix of rank one.

Let us now pass to step (ii). First, we recall a theorem of Wilkinson
found in ref. 17:

Theorem A.1 (Wilkinson). Let A and B be N × N real symmetric
matrices and let

C=A+B.

Let ci, ai and bi (i=1, 2,..., N) be the (real) eigenvalues of C, A, and B,
respectively, arranged in non-increasing order, i.e.,

c1 \ c2 \ · · · \ cN;

a1 \ a2 \ · · · \ aN;

b1 \ b2 \ · · · \ bN.

Then

cr+s − 1 [ ar+bs - r+s − 1 [ N. (A13)

Notice that we can also write

A=C+(−B), (A14)

and since the eigenvalues of −B arranged in non-increasing order are

−bN − i+1

we can write

ar+s − 1 [ cr − bN − s+1. (A15)

Now, we are interested in a special case, i.e., the case in which the
matrix B is of rank one (has only one nonzero eigenvalue). What does
Wilkinson’s theorem say when applied to such a special case? We consider
the two possible cases, namely:

(a) the nonzero eigenvalue is negative:

bi=0 for i=1, 2,..., N − 1, bN=−+;

1116 Casetti et al.



(b) the nonzero eigenvalue is positive:

bN=+, bi=0 for i=2, 3,..., N.

Case (a). Choosing s=1 in Eq. (A13) we get bs=0, so that

cr [ ar r=1,..., N, (A16)

while choosing s=2 in Eq. (A15) we get −bN − s+1=0 again, whence

ar+1 [ cr r=1,..., N − 1. (A17)

Combining Eqs. (A16) and (A17) we obtain

ar+1 [ cr [ ar r=1,..., N − 1; (A18)

cN [ aN. (A19)

We have thus shown that all the eigenvalues of C (except for the smallest
one) are bounded between two successive eigenvalues of A. As to cN, we
can only say that it is smaller than (or equal to) the smallest eigenvalue
of A.

Case (b). Choosing s=2 in Eq. (A13) we get bs=0, so that

cr+1 [ ar r=1,..., N − 1, (A20)

while choosing s=1 in Eq. (A15) we obtain

ar [ cr r=1,..., N. (A21)

Combining Eqs. (A20) and (A21) we obtain

ar [ cr [ ar − 1 r=2,..., N; (A22)

c1 \ a1. (A23)

We have thus shown again that all the eigenvalues of C (except, in this
case, for the largest one) are bounded between two successive eigenvalues
of A. As to c1, we can only say that it is larger than (or equal to) the
smallest eigenvalue of A, a1.

Let us now apply these results to our problem, i.e., to the computation
of the number of negative eigenvalues of the matrix H in Eq. (A4). Denot-
ing by gi its eigenvalues, by di those of D and by bi those of B, we have

bi=0 - i ] 1, N, (A24)
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and either

b1=0, bN=−+,

or

b1=+, bN=0.

At a given critical point, with np angles equal to p, the eigenvalues of D are
(for the moment we do not order them)

di=mx+h i=1,..., N − np; (A25)

di=−(mx+h) i=N − np+1,..., N. (A26)

The x-component of the magnetization vector is given by

mx=1 −
2np

N
(A27)

so that

mx > 0 if np [
N
2

, (A28)

mx < 0 if np >
N
2

. (A29)

Then, if the external field h is sufficiently small:
if np [ N/2, then

di=mx+h > 0 i=1,..., N − np, (A30)

di=−(mx+h) < 0 i=N − np+1,..., N, (A31)

i.e., there are N − np positive and np negative d’s;
else if np [ N/2, then

di=−(mx+h) > 0 i=1,..., np, (A32)

di=mx+h < 0 i=np+1,..., N, (A33)

i.e., there are np positive and N − np negative d’s.
Now we claim that, at least as N gets large, we can estimate the

number of negative g’s, i.e., the index of the critrical point, by saying that it
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is equal to the number of negative dŒs. More precisely, we claim that the
error of our estimate is not larger than 1, i.e.,

index(H)=#(g < 0)=#(d < 0) ± 1. (A34)

and as N gets large this error becomes obviously negligible. To prove this
statement, let us consider the case in which np < N/2. We observe that we
do not know whether we are in Case (a) or in Case (b), i.e., we do not
know if the matrix B has a negative or a positive eigenvalue. But we can,
anyway, try one of the two cases, say (a). Using Eqs. (A18) and (A19) we
can then say that

dr+1 [ gr [ dr < 0 r=N − np+1,..., N − 1, (A35)

(note that these are np − 1 equations), and that

gN [ dN < 0. (A36)

Thus we conclude that the number of negative g’s is just equal to that of
negative d’s, i.e., np. If we guessed correctly the sign of the nonzero eigen-
value of B, then, our estimate is exact. But in case we guessed it wrong, i.e.,
if we were in Case (b) and not (a), by using Eqs. (A18) and (A19), we
would have overestimated the number of negative g’s by 1. Conversely, if
we had used the equations of Case (b) in a situation which belonged to
Case (a) we would have underestimated the index by 1. So, we conclude
that the error of our estimate is always ± 1.

A.2. One-Dimensional XY Model

Here we want to discuss the details of the result reported in Eq. (36),
i.e., that in the case of the one-dimensional XY model with nearest-neigh-
bor interactions the index of the critical points equals the number nd of
‘‘domain walls’’ in the configuration.

First of all, let us notice that in the present case the Hessian matrix H
is tridiagonal, i.e., it can be written as

H=R
a1 b1 0 0 · · · 0

b1 a2 b2 0 · · · 0

0 z z z z x

x z z z z 0

0 · · · 0 bN − 2 aN − 1 bN − 1

0 · · · 0 0 bN − 1 aN

S (A37)
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where, assuming free boundary conditions,

a1=cos(j2 − j1)+h cos(j1); (A38a)

ai=cos(ji+1 − ji)+cos(ji − ji − 1)+h cos(ji), i=2,..., N − 1;
(A38b)

aN=cos(jN − jN − 1)+h cos(jN), (A38c)

and

bi=−cos(ji+1 − ji), i=1,..., N − 1. (A39)

Since at critical points ji=0 or p, we have that for any i and for any criti-
cal point

bi= ± 1 (A40)

while the diagonal elements ai are

a1=1 ± h; (A41a)

ai=2 ± h, i=2,..., N − 1; (A41b)

aN=1 ± h, (A41c)

if there are no domain walls, i.e., if nd=0, while they can assume also the
values ± h and − 2 ± h ( − 1 ± h if i=1 or i=N) if nd ] 0, i.e., if there are
domain walls.

Let us now prove that nd ] 0 is a necessary condition for the presence
of negative eigenvalues of the Hessian, i.e., for a nonvanishing index of a
critical point. To do that, we recall a theorem due to Gershgorin (see, e.g.,
ref. 17), which, in the simple case of a real symmetric matrix, can be stated
as follows:

Theorem 1.2 (Gershgorin). Let A be a real n × n symmetric
matrix whose elements are aij, and let

ri=C
j ] i

|aij |, i=1,..., n;

the eigenvalues of A lie in the intervals

Xi={x ¥ R : |x − aii | < ri};

if m of the Xi form a disjoint set, then precisely m eigenvalues (counted
with their multiplicity) lie in it.
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In our case, due to Eq. (A40), at any critical point we have

r1=rN=1; (A42a)

ri=2, i=2,..., N − 1, (A42b)

so that, if nd=0 and h Q 0, Eqs. (A41) and Gershgorin’s theorem imply
that all the eigenvalues lie in the interval |x − 2| < 2, so that there are no
negative eigenvalues and the index is zero. On the other hand, if nd ] 0 and
h Q 0, then the intervals Xi are either |x| < 2, or |x+2| < 2, hence the
eigenvalues lie in the interval (−4, 2), so that the index can be nonvanish-
ing. However, Gershgorin’s theorem is useless to compute the number of
negative eigenvalues, because the intervals Xi overlap each other, thus the
eigenvalues cannot be localized more strictly.

Anyway, the fact that the Hessian is tridiagonal allows us to compute
directly its characteristic polynomial det(H − lI), whose roots l1,..., lN are
the eigenvalues, by means of a recurrence formula. Let

p0(l)=1; (A43a)

p1(l)=a1 − l; (A43b)

pk(l)=(ak − l) pk − 1(l) − b2
k − 1pk − 2(l) (A43c)

then, since

pk(l)=det R
a1 − l b1 0 0 · · · 0

b1 a2 − l b2 0 · · · 0

0 z z z z x

x z z z z 0

0 · · · 0 bk − 2 ak − 1 − l bk − 1

0 · · · 0 0 bk − 1 ak − l

S ,

k=2,..., N, (A44)

the characteristic polynomial of H is given by pN(l). Since at the critical
points all the b’s are ± 1 – see Eqs. (A40), we have that

p0(l)=1; (A45a)

p1(l)=a1 − l; (A45b)

pk(l)=(ak − l) pk − 1(l) − pk − 2(l) (A45c)
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so that the characteristic polynomial pN(l) depends only on the a’s.
Moreover, the following theorem holds (see, e.g., ref. 21):

Theorem A.3. Let H be a tridiagonal symmetric matrix defined as
in Eq. (A37). Define the sequence

{p0(l), p1(l),..., pN(l)} (A46)

as in Eq. (A43c); then the number of sign changes in the sequence (with the
rule that if pi(l)=0 then it has the opposite sign of pi − 1(l)) equals the
number of eigenvalues of H which are less than or equal to l.

Then the number nc of sign changes in the sequence

{p0(0), p1(0),..., pN(0)} (A47)

equals the number of negative eigenvalues, i.e., the index of the critical
point because no eigenvalues are zero. If one puts h=0, then there is one
eigenvalue which becomes zero at any critical point, so that the index
equals nc − 1, but in this case one easily sees by direct computation (which
can be performed exactly on a computer at any N because in this case the
a’s are integer numbers) that nd=nc − 1, so that one finds the result
reported in Eq. (36).
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